Bound States of the Klein-Gordon for Exponential-Type Potentials in D-Dimensions
نویسنده
چکیده
The approximate analytic bound state solutions of the Klein-Gordon equation with equal scalar and vector exponential-type potentials including the centrifugal potential term are obtained for any arbitrary orbital quantum number l and dimensional space D. The relativistic/non-relativistic energy spectrum formula and the corresponding un-normalized radial wave functions, expressed in terms of the Jacobi polynomials , , n P z 1, 1 and or the generalized hypergeometric functions 1, 1 z 2 1 , ; ; F a b c z have been obtained. A short-cut of the Nikiforov-Uvarov (NU) method is used in the solution. A unified treatment of the Eckart, Rosen-Morse, Hulthén and Woods-Saxon potential models can be easily derived from our general solution. The present calculations are found to be identical with those ones appearing in the literature. Further, based on the PT-symmetry, the bound state solutions of the trigonometric Rosen-Morse potential can be easily obtained.
منابع مشابه
Soliton-like Solutions of the Complex Non-linear Klein-Gordon Systems in 1 + 1 Dimensions
In this paper, we present soliton-like solutions of the non-linear complex Klein-Gordon systems in 1+1 dimensions. We will use polar representation to introduce three different soliton-like solutions including, complex kinks (anti-kinks), radiative profiles, and localized wave-packets. Complex kinks (anti-kinks) are topological objects with zero electrical charges. Radiative profiles are object...
متن کاملRelativistic treatment in D-dimensions to a spin-zero particle with noncentral equal scalar and vector ring-shaped Kratzer potential
The Klein-Gordon equation in D-dimensions for a recently proposed Kratzer potential plus ring-shaped potential is solved analytically by means of the conventional Nikiforov-Uvarov method. The exact energy bound-states and the corresponding wave functions of the Klein-Gordon are obtained in the presence of the noncentral equal scalar and vector potentials. The results obtained in this work are m...
متن کاملAnalytical solutions for the fractional Klein-Gordon equation
In this paper, we solve a inhomogeneous fractional Klein-Gordon equation by the method of separating variables. We apply the method for three boundary conditions, contain Dirichlet, Neumann, and Robin boundary conditions, and solve some examples to illustrate the effectiveness of the method.
متن کاملB-SPLINE COLLOCATION APPROACH FOR SOLUTION OF KLEIN-GORDON EQUATION
We develope a numerical method based on B-spline collocation method to solve linear Klein-Gordon equation. The proposed scheme is unconditionally stable. The results of numerical experiments have been compared with the exact solution to show the efficiency of the method computationally. Easy and economical implementation is the strength of this approach.
متن کاملBound States of the Klein-gordon Equation in the Presence of Short Range Potentials
We solve the Klein-Gordon equation in the presence of a spatially one-dimensional cusp potential. The bound state solutions are derived and the antiparticle bound state is discussed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Quantum Information Science
دوره 1 شماره
صفحات -
تاریخ انتشار 2011